
28 KSME Journal, Vol. 2, No. l, pp. 28~34, 1988. 

A N O N D I M E N S I O N A L  ANALYSIS  OF DUSTY SHOCK W A V E S  
IN STEADY FLOWS 
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The governing equations describing the flow field which results when a dust-gas suspension passes through a normal shock wave 
were nondimensionalized. The nondimensionalization resulted in a set of nondimensional groups of parameters which, if kept 
constant, lead to a self-similar solution. An investigation of these nondimensional groups of parameters revealed, for example, that 
the relaxation length depends linearily on the material density of the solid particles. Dependence of the relaxation length on the 
other parameters of thd dust is discussed. 
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1. I N T R O D U C T I O N  

The  interest in the gas-dynamic behaviour  of a gas-part icle 
suspension grew in the past three decades due to its applica- 
tion in many engineering problems. Some typical examples  
are : metal ized propellents of rockets,  jet-type dust collectors 
and blast waw.~s in dusty atmospheres.  In addition, mixtures  
with gases heavily laden with solid part icles occur frequently 
in industrial processes such as plastics manufacturing,  flour 
milling, coal-dust  conveying,  powder  me ta lu rgy  and 
powdered-food processing. General descriptions of such flows 
can be found in several  books and review papers [Soo (1967), 
Marble  (1970) and Rudinger (1973)]. 

The  major  differences between the flow fields which are 
developed behind a normal  shock wave  in a dusty-gas and a 
pure (dust-free) gas are il lustrated in Figs. la  and b for the 
tempera tures  and the velocities, respectively. When a steady 
pure gas encounters  a normal  shock wave  it experiences a 
sharp (almost discontinuous) change in its thermodynamic  
and kinematic  properties. This  sudden change is shown in 
Fig. 1 to occur between (0) and (1). The  thickness of this 
disturbance, I f  is only a few mean free paths of the gas atoms 
or molecules. ]Beyond (1) the gas propert ies remain constant 
(solid lines in l:'igs, l a  and b) provided the gas  conditions at (1) 
are not sufficient to exci te  the internal degrees of freedom of 
the gas. 

If, however,  the gas is laden with solid part icles then the 
suspension which was originally at a state of thermodynamic  
and kinematic  equilibrium, ahead of the shock front, is sud- 
denly changed into a non-equilibrium state, because the solid 
particles, due to their  size compared with lf, do not experi- 
ence any noticeable change in their propert ies upon moving 
from (0) to (1). Thus, at (i) the gas  has a much higher tempera- 
ture than the dust, Tg>> T~ and a much lower veloci ty u<< v. 
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Morgenthaler  (1962) indicated that  this is true even if the 
part icle d iameter  is as small  as 0.1/~m (for shock waves  in air 
at nearly standard conditions, where the mean free path is 
about 0.066pm). Therefore ,  the part icles are not influenced by 

the initial disturbance, and the gas propert ies at (1) can be 
safely assumed to be identical to those of a pure gas with the 
same initial conditions. 

Far  downs t ream of (1), i.e., at (co) in Fig. (1), the gas and the 
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solid phases reach a new state of thermodynamic and 
kinematic equilibrium via momentum and energy exchange. 
Theoretically all shock waves in dusty gases are infinitely 
thick, since equilibrium is approached asymptotically. How- 
ever, it is a common practice to assign to the shock wave an 
effective thickness which is defined by a requirement that the 
suspension properties come close to their asymptotic down- 
stream values. It was shown by Gottlieb and Coskunses (1985) 
that the suspension equilibrium properties (at infinity) can be 
calculated from the usual normal shock wave relations, 
provided that the usual pure gas parameters ;, and R (the 
heat capacities ratio and the gas constant) are replaced by 
effective values ~, and R which solely depend on the initial 
conditions of the suspension. 

Between (1) and (co) the solid particles are not in equilib- 
rium with the gas. The flow region between (1) and (oo) is 
known as the relaxation zone, for it is analogous to the 
relaxation zone in pure gases where the internal degrees of 
freedom are excited. The extent of the relaxation zone 
strongly depends on the momentum and heat transfer mecha- 
nisms which enable the solid and the gaseous phases to reach 
a new equilibrium state. The analysis of the relaxation zone 
was studied by many investigators. The pioneering works of 
Carrier (1958), Kriebel (1964) and Rudinger (1964) verified the 
existence of this relaxation zone and identified the parame- 
ters affecting it, namely ; the solid particle diameter. D, its 
heat capacity, C, its material density, a, and the loading 
ratio, ~. Igra and Ben-Dor (1980) compared various correla- 
tions for the drag coefficient, Co, and the heat transfer 
coefficient, Nu, and pointed out their effect on the extent of 
the relaxation zone. In addition they studied the role of 
thermal radiation heat transfer between the two phases and 
showed that it can be neglected when the incident shock 
waves Mach number is smaller than five. 

In the present study a more general approach of investigat- 
ing the dependence of the post shock flow field on the various 
physical parameters of the solid phase is presented. It is based 
on nondimensionalizing the governing equations and thereby 
obtaining a set of nondimensional groups of parameters, 
which if kept constant ensure a self-similar solution of the 
governing equations. 

In the following, the basic assumptions upon which the 
present model is based are given. The assumptions are foll- 
owed by the governing equations and the numerical results 
arising from their solution. 

2. THEORETICAL BACKGROUND 

(4) Aside from momentum and energy interactions between 
the gaseous and the solid phases, the gaseous phase is consid- 
ered to be a perfect flow, i.e., its dynamic viscosity, ~g, and its 
thermal conductivity, k~, are zero. This also implies that 
neither kinematic nor thermal boundary layers develop 
around the solid particles. 
(5) The solid particles are too large to experience any change 
in their thermodynamic and dynamic properties upon their 
passage through the shock front. In addition they are also 
large enough not to experience Brownian motion. Thus, the 
partial pressure of the solid phases can be neglected. 
(6) The solid particles are such that they satisfy the condition 
B ,<  0.1, where B~ is the Blot number, B , =  hr/kp (h is the 
coefficient of heat transfer, r is the radius of the particle, and 
kp is its thermal conductivity). Thus the temperature within 
the solid particles can be assumed 1:o be uniform. 
(7) The weight of the solid particles and the buoyancy forces 
experienced by them are negligibly :small in comparison with 
the drag forces acting on them. 
(8) The heat capacity, C, of the solid particles is constant. 
(9) Ahead of the normal shock wave the suspension is at a 
state of thermodynamic and kinematic equilibrium, i.e., uo= 
vr and T~o-Tpo, where u and v are the velocities of the 
gas and the solid particles, and Tg and Tp are the tempera- 
tures of the gas and solid particules, respectively. 
In addition to the above listed assumptions it is assumed that 
the flow under consideration is one.dimensional and steady. 

2.2 Governing Equations 
The development of the governing equations can be found 

in many papers and hence in the following only their final 
form is listed. 
-continuity of the gaseous phase 

S~(pgu) = 0 (1) 

-continuity of the solid phase 

ddx-(Opv) = 0 (2) 

-conservation of linear momentum of the gaseous phase 

-3d-(p~u~) = F ,  (3) 

-conservation of linear momentum of the solid phase 

2.1 Assumptions 
The assumptions upon which the present model is based 

and their implications are listed in the following: 
(1) The gaseous phase behaves as an ideal gas. Thus, the 
equation of state of the gas is P = pgRTg. It is further assumed 
that the gas is calorically perfect, i.e., both Cp and Cv are 
assumed to be constant. 
(2) All solid particles are rigid, inert small spheres uniformly 
distributed in the gaseous phase. Thus there is no heat addi- 
tion or reduction due to chemical processes between the solid 
and the gaseous phases. Furthermore, Re and Nu are based 
on the particle diameter, D. 
(3) The volume of the solid phase in the suspension can be 
neglected. Thus the momentum and energy exchange 
between the solid particles can be ignored. 

, 4  

~x (PPv~) . . . .  F~} 

-conservation of energy of the gaseous phase 

d 1 2 

-conservation of energy of the solid phase 

d �9 1 2 

-equation of state of the gaseous phase 

P = pgR 1~ 

(4) 

(5) 

(6) 

(7) 



30 G. Ben-Dot, M. Mond, O. Igra and Y. Martsiano 

In the above equations pg, u, Tg and P are the density, 
velocity, temperature and pressure of the gaseous phase, 
respectively, o~, v and Tp are the spacial density, velocity and 
temperature of the solid phase respectively. Note that accord- 
ing to assumption 5 the partial pressure of the solid phase is 
zero. For this reason P is not only the pressure of the gaseous 
phase, but the pressure of the suspension as well. Ca and R 
are the specific heat capacity at constant pressure and the 
specific gas constant of the gaseous phase and C is the 
specific heat capacity of the particles of the particles of the 
solid phase. Fv is the drag force per unit volume exerted by 
the gaseous phase on the particles of the solid phase and Qu.r. 
is the heat transferred per unit volume from the solid phase to 
the gaseous phase. 

The drag force, Fo, can be calculated from 

3 
F ~ = ~ p w ~ ( v -  u) I v -  u I Co/(D~) (8) 

where D is the diameter of the solid particles, a is their 
material density and Co the drag doefficient is usually given 
by a function of the form 

Co = Co (Re) (9) 

Since the Re number (see definition in Eq. 10) is very high 
immediately behind the shick front while its magnitude 
vanishes towards the end of the relaxation zone, where v~ u 
is approached, two different correlations were used for Co. 
For Re < 800 

Co =-~ee (1 + O. 05Re ~ ) 

and for 800 < Re < 3 • lO s 

CD= ~4e (1+0.15Re ~ + 0.42 
1+42500 Re -L'6 

The Reynolds number in the above expression is 

where kg (also in Eq. 12) is the thermal conductivity of the 
gaseous phase. 

In summary the governing equations consist of 7 equations 
(four for the gaseous phase, i.e., conservation of mass, 
momentum and energy and the equation of state and three for 
the solid phases, i.e., conservation of mass, momentum and 
energy). The number of the unknowns in the above set of 
equations is also 7 (pg, u, T~ and ~P for the gaseous phase and 
pp, v and Tp for the solid phases). Thus the above set of 
governing equations is solvable in principle. 

2.3 Nondimens iona l i za t ion  of  the  Governing  
Equations  

Prior to numerically solving the above listed governing 
equations, let us first nondimensionalize the dependent and 
independent variables using the following nondimensional 
definitions. 

IA V,= V, X,=X ~ 
ao  ' (ZO 

Pg , pp 
P ' g :  Pgo' P P-- PPo' 

P C~Tg CpTp 
P ' -  O~oag' T'g ag ' T'~= a~- 

In the above definitions pgo is the density of the gaseous 
phase ahead of the shock wave, ao is the local speed of sound 

ahead of the shock wave and L is the relaxation length. 
Inserting the above definitions into the above listed governing 
equations, results in the following set of nondimensional 
equations (note that for simplicity the prime sign is omitted, 
but from this stage on, all the independent and dependent 
variables are nondimensional). 
-nondimensional conservation of the mass of the gaseous 
phase 

-d•(Ogu) = 0 (15) 

Re ogl v -  u [ D (10) 
/Jg 

where/~g is the dynamic viscosity of the gaseous phase. 
The heat transferred from the gaseous phase to the solid 

phase can be calculated from 

Q..r,=6hop( Tp - Tg) / (Do) (11) 

where h the coefficient of heat transfer can be obtained from 

-Nondimensional conservation of the mass of the solid phase 

d~(Opv) (16) 0 

-Nondimensional conservation of the linear momentum of 
the gaseous phase 

d~x (p~u2+,)_ 3 L O,o 
4 a PP v - - u  DOe ( v -  u) l leD (17) 

h -  kqNu 
D (12) 

-Nondimensional conservation of the linear momentum of 
the solid phase 

The Nusselt number, Nu,  is usually given by a function of the 
form 

N u  = 2 + 0. 459 Pr  l/a Re0.Ss (13) 

In the last expression Pr is the Prandtl number, i.e., 

Pr = I~gC, kg (14) 

d •  30~o L 
(OPv2)= 4 o DO~ Op(v- u) l v -  u l Co (18) 

-Nondimensional conservation of the energy of the gaseous 
phase 

~x  o~u T g + ~ u  =6 a D R~Pr  pg(T~-T~) 

4 4-3 Og~a ~ L D ( v - u ) [ v - u i v C ~  (19) 
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-Nondimensional conservation of the energy of the solid 
phase 

,[ ( ,,)] N u  
dxx Opv 8Tp+-2-v = a D R ~ P r  Og(Tp-  Tg) 

3 pgo L ( v _ u )  l v _ u ] v C D  (20) 
4 a D 

-The nondimensional equation of state of the gaseous phase 

R 7--1 
P = C-~Og Tg . . . .  ~ - p g  Tg 

In the above set of nondimensional equations 

(21) 

Cp R ~ =  OgoaoD 8 =  and 7 = ~  
p g  

The above set of nondimensional governing equations 

implies that if Rb, N u ,  Pr ,  3, 7 and .K~0_ .L are kept constant. 

then the solution of the governing equations is self-similar. 
While the first five nondimensional groups are well known, 
the sixth one has never been mentioned in the past, in any of 
the known published papers. Physcially it is a measure of the 
coupling between the gaseous and the solid phases. 

2.4 Numerical Verification and Discussion 
The solution of the dimensional governing equations, i.e., 

equations 1 to 7 is shown in Fig. 2 for three different cases. 
For all the three cases, the incident shock wave Mach 

number is M0 = 2, the loading ratio of the dust phase in the 
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the figures 

suspension is ~ = 0.1, the diameter of the solid particles is D 
= 100/zm and their specific heat capacity is C = 1000J/(Kg K). 
The three cases differ in their material density-a. In Fig. 2a 
a=lOOOKg/m a, in Fig. 2b a=2500Kg/M s and in Fig. 2c a =  
5000Kg/M a. 

The flow fields which result for these three cases are 
plotted in Figs. 2a, b and c, in which the horizontal scale is 4, 
l0 and 20 m. Note that the horizontal scales are proportional 
to the material densities, i.e., 1000 : 2500 : 5000 and 4 : 10 : 20. 

In view of the above discovery of the existence of the 
L following nondimensional group _ ~ o  it is not surprising 

that the various property profiles of the flow fields shown in 
Figs. 2a, b and c, are identical. This :is due to the fact that the 
material density a affects only this nondimensional group out 
of the six mentioned earlier. Thus, by scaling down the 
horizontal axis of Figs. 2b and c proportionally to the 
increase in the material density, a, the value of the nondimen- 

Pgo L sional group - ~ -  D was also kept constant (in addition to the 

other five nondimensional groups which, as mentioned ear- 
lier, are unaffected by the material density of the solid 
particles). This, in turn, resulted in a self-similar solution as 
shown in Fig. 2. 

The foregoing discussion can be summarized by the follow- 
ing conclusion : The relaxation length, L, depends linearly on 
the material density of the solid particles, 6, i.e. 

g2 L2 

Inspection of the six nondimensional groups, i.e., 

R S =  pgoaoD, P r -  pgCp N u =  hD 
[zg kg " kg ' 

L 8 =  C 7 = C P  and Pgo 
Ca' Co a D 

indicates that the dependence of the relaxation length, L, on 
the remaining two physical properties of the dust particles, 
namely their diameter, D, and specific heat capacity, C, is not 
as simple as its above mentioned dependence on the material 
density. For example a change in the diameter of the solid 
particles, D, influences three of the six nondimensional 
groups. However, as an exercise, the following problem was 
solved numerically /14o=2, z/=0.1, C=1000J/KgK),  or= 
1000Kg/m s and D = 200~m. This diameter is twice as big as 
that used in Fig. 2a. In addition to the change in the diameter 
of the solid particles, the dynamic: viscosity and thermal 
conductivity of the gaseous phase were set, artificially, to be 
equal to twice their respective values in the case shown in 
Fig. 2a. If the properties of the case shown in Fig. 2a, which 
were changed in the considered artificial case, are denoted by 
a subscript "r", then the values of the six nondimensional 
groups for this artificial case become : 

R ~  Pgo ao 2D~ _ Pgo ao D~ 
2[lgr Pgr 

P r -  2pg~ Ca _ lzg~Cp 
2kg~ k,r 

h2D~ _ hD~ 
N u  : 

2kg~ kg~ 

8 = C p  ' 7=-C-P-C~ and 

Pg0 L _ Pgo (0.5L) 
g2Dr oD~ 
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are the dynamic viscosity and thermal conductivity of the 
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where 7~ is the dust loading ratio. 
Equation (23) implies that the loading ratio, ~, determines 

the ratio between the rate of flow of the dusty phase and that 
of the gaseous phase. The higher ~ is, the greater the amount 
of the dust in the suspension. 

It should be noted that there are publications where the 
loading ratio is defined in a different way : 

. _ ppo (24) 
ppo H Pgo 

Thus while it is clear from Eq. (23) that 0 < ~ < c o  Eq. (24) 
implies that 0< ~* < 1. Note that in both cases the upper limit 
of the loading ratio (z2 or ~*) is only mathematical, since 
assumption 3 puts a physical upper limit on the loading ratio. 
This physical upper limit can be calculated in the following 
way : 
The volume occupied by the solid particles, V,, is: 

V , =  m a N  
U 

where rn~ is the mass of a single solid particle, v is its 
material density and N is the number of solid particles in a 
given volume of suspension v. On the other hand r n p N  = Mp 

where Mp is the mass of all the solid particles in the given 
volume V. Dividing both sides of the above expression by V 
results in 

Thus, it is evident that if the horizontal scale is scaled 
down by a factor of two, then the values of the six nondimen- 
sional groups of the artificial case become identical to those 
of the reference case denoted by " r "  and, hence, the numeri- 
cal solution of the artificial case should be self-similar to the 
reference case. Fig. 3, which represents the numerical solu- 
tion of the artificial case, indeed verifies that the solution of 
the artificical case is identical to that of the reference case. 

2.5 The Dependence of  the Loading Ratio 
Although the above nondimensional analysis resulted in six 

nondimensional groups, namely:  R~, P r ,  N u ,  3, z and 

_OL0 . L  there is another very important nondimensional 
o" D '  

parameter, which has a significant effect on the post shock 
flow field. It is the dust loading ratio, ~. The value of 
determines the intensity of the coupling between the two 
phases. This can be shown by using the conservation equa- 
tions of the two phases. Integrating equations (1) and (2) 
results in : 

and 
p ~ u = p ~ o u o  (22a) 

ppv  ppoVo (22b) 

V ,  _ ppo 
V 

where p~o is the spatial density of the solid particles ahead of 
the shock wave. If 1% limit on the volume of the solid 
particles is assumed to satisfy the limit imposed by assump- 
tion 3 then: 

;1 = pp~ o (25) 
p~o Dgo 

For a typical dust with material density v = 2000 Kg/m a in air 
at atmospheric conditions p g o ~ O . 8 K g / m  a Eq. (25) results in 

~ 25. (25a) 

Finally it is of interest to note that the above mentioned two 
different definitions for the loading ratio are simply related 
by 

71 (26) 
~*- I+~ 

Thus the limit on ~ (Eq. 25a) implies that 

Dividing these two equations yields : ~* -<0.96 (26a) 

ppU _ pooUo 

pgU PgoUo 

But using the condition that ahead of the shock wave, in state 
(0), the suspension is in a kinematic equilibrium, i.e., Uo = Vo 

the above expression becomes : 

_@v = p~o_ = ~ (23) 
pgU Pgo 

As discussed in lgra and Ben-Dor (1988), the dust-gas sus- 
pension ahead of the shock wave can be considered as a 
pseudo single phase gas having the following specific heat 
capacities : 

Cp=z~*C+ (1-7/*) Cp 
C v = ~ * C + ( 1 - ~ * ) C v  

These specific heat capacities, result in: 
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C,~ C +  (1 ~*) C,, 

which can be rewri t ten in the following way : 

_ r~* c~-~ ( 1 - ~ * )  
7" = 7-~-~;~ ~ F {:1~2~-,) -- (27) 

where 3 is one of the nondimensional  parameters  mentioned 
previously, i.e., c~=C/CP. In addition, the local speed of 
sound of this pseudo-simple phase gas is 

a = y R  Tg 

m 

where R = ( 1 - r / * ) R .  This  speed of sound results in a new 
Mach number for the pseudo-single phase gas : 

---- Uo 
(/ 

It can be also shown that d < a and hence M o > Mo. Using 
the Rankine-Hugoniot  equation with M o and y ra ther  than 
Mo and 7 results in the values of the suspension properties at 
the end of the re.laxation zone. however,  since both M o 
and ~ depend on ~/* it is c lear  that  the suspension prop- 
erties at the end of the re laxat ion zone also depend on v*. 

The  strong dependence of the suspension properties on the 
loading rat io r/ is shown in Fig. 4, which is a reproduction 
(dashed lines) of the results shown in Fig. 2a, with the addi- 
tion (solid lines) of the numerical  solution for the conditions 
Mo=2, D=100smu C=1000J / (Kg  K), a = ] 0 0 0 K g / m  :' and 7j 
= 1. Note that  the only difference between the two cases is in 
z/ which is changed from 0.1 to 1. The  change in the ,.suspen- 
sion propert ies at the end of the re laxat ion  is clearly evident. 

In order to il lustrate again the self s imilari ty of the solu- 
tion, the case shown in Fig. 4 is replotted in Fig. ,% in a 
slightly different horizontal  scale. A similar  calculat ion but 
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Fig.  5 The profiles of the various suspension properties in the 
relaxation zone for: Mo=2, z]=l, D=100/~m, C=1000J/ 
(KgK) and different values of a which appear in the 
figures 

for a = 5000Kg/m 3 rather  than 1000Kg/m 3 is shown in Fig. 5b. 
Since the mater ia l  density is increased by a factor  of five, the 
scale in Fig. 5b is extended by a factor  of five. The  profile 
shapes in Figs. 5a and 5b are identical. 

3. CONCLUSIONS 

A nondimensional analysis of dusty shock waves  resulted 
in seven nondimensional groups of parameters  which, if 
maintained constant, yield a self-similar solution. The  seven 
nondimensional groups and parameters  a r e :  

R ~ -  o~o ao D P r =  l~gCp hD ...... . . . . . . . . . . .  , N u  : - -  
H~ k~ ' k~ 

C C~ ri - #p o_ and pg~ L 
b =  Cp' T=-C~,' o~o a D 

From the last nondimensional group which to the best of our 
knowledge has not been mentioned in the past, it is evident 
that  re laxat ion length, L, depends ldnearly on the mater ia l  
density of the solid particles, o, i.e., 

LI U1 
L2 62 

provided that the part icle d iameter  and the initial condit ions 
of the gaseous phase are kept constant. 
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